镧对酸雨影响下水稻活性分析研究

2017-03-15 05:53:26 北京绿水环境工程技术有限公司 0

  1 引言

  酸雨是全球性三大主要环境污染之一,不仅能直接伤害农作物,如抑制植物生长发育,降低产量与品质,还能间接通过改变土壤性质及影响土壤微生物活性并影响农作物,已成为制约农业生产的重要因素.面对我国酸雨区面积不断扩大的严峻现实,减轻酸雨对植物的伤害已成为保障粮食安全的重要论题.有关稀土农用的研究显示,稀土可增强植物对冷冻、干旱、重金属、紫外辐射、酸雨等胁迫因子的耐受能力,这与稀土增强植物光合作用,促进营养吸收,稳定细胞膜结构,以及提高抗氧化能力等有关.质膜H+-ATPase被誉为植物的主宰酶,参与转运胞内H+和植物对逆境胁迫的响应.课题组前期研究显示,酸雨胁迫会引起水稻叶片中质膜H+-ATPase活性变化,在一定范围能调节胞内pH,维持胞内物质稳定,从而增强植物对酸雨胁迫的耐受性.那么稀土增强植物耐酸性是否与质膜H+-ATPase活性变化有关?既然稀土能通过稳定膜结构来缓解非生物胁迫的伤害,且质膜H+-ATPase活性又与质膜环境密切相关,那么稀土对酸雨胁迫下质膜H+-ATPase活性的调节是否也与质膜环境有关?明晰这些问题,不仅对揭示质膜H+-ATPase在植物对酸雨适应性机制中的作用至关重要,也可为形成化控减灾的有效途径提供理论依据.鉴于此,本文选取重要粮食作物水稻作为研究对象,以相对生长速率、质膜H+-ATPase水解活性与胞内H+荧光强度、CAT活性、H2O2、MDA含量和质膜脂肪酸组成为研究内容,探讨镧对酸雨胁迫下水稻叶片质膜H+-ATPase活性的影响机制,以期为丰富稀土增强植物耐酸性机制提供基础数据,也为寻求化控减灾的有效措施提供新的思考方向.

  2 材料与方法

  2.1 试材培养

  供试水稻(Oryza sativa)品种为淮稻8号.挑选籽粒饱满的种子用0.1%HgCl2消毒10 min,去离子水浸泡后于25 ℃恒温光照培养箱中催芽2 d,待幼苗长至2叶1心时移入6.88 L周转箱中水培,营养液采用国际水稻研究所(IRRI)常规营养液配方,并略作修改.Fe以Fe-EDTA形式加入,保持营养液中Fe浓度为2.0 mg · L-1,并加入NaSiO3 · 9H2O保持营养液中SiO2浓度为120 mg · L-1,NH+4-N中加入5.89 mg · L-1双氰胺作为硝化抑制剂.每次用H2SO4或NaOH将营养液pH调至5.5,营养液每隔3 d更换1次.培养光照强度为300 μmol · m-2 · s-1,光照12 h,昼/夜温度为30 ℃/24 ℃,相对湿度为60%.待幼苗长至3叶1心时,选长势相近的幼苗进行处理.

  2.2 试材处理

  配制LaCl3溶液(15 mg · L-1).配制pH=1.0的模拟酸雨母液(SO42-/NO3-,3 ∶ 1,V/V),用母液配制成pH=3.5、2.5的模拟酸雨溶液.用喷雾器先将LaCl3溶液均匀喷施于叶片,滴液为限,待叶面干涸后,将酸雨用同样的方法喷施于叶片,对照(CK)喷施等量蒸馏水,连续处理5 d.处理结束后,取每株从上到下数第二叶位的叶片进行指标测定.实验处理设置:CK、pH=3.5 AR、pH=2.5 AR、La(15 mg · L-1)、La+pH 3.5 AR、La+pH 2.5 AR处理组.

  2.3 指标测定方法

  相对生长速率测定参考文献方法;质膜H+-ATPase活性参照文献方法;用酶解法提取水稻叶片原生质体,用BCECF-AM荧光探针染料标记细胞,通过流式细胞仪测定胞内H+荧光强度来表示胞内H+浓度;采用高锰酸钾滴定法测CAT活性和采用硫酸钛法测H2O2含量;采用硫代巴比妥酸法测MDA含量;采用气相色谱测定质膜脂肪酸组成.

  2.4 数据处理与分析

  所有数据均为3次独立试验的平均值±标准误差(Mean±SD),所有原始数据的平均值、标准误差和差异显著性用 SPSS16.0软件分析.数据制图在Origin8.0软件中完成.

  3 结果与分析

  3.1 镧对酸雨胁迫下水稻相对生长速率的影响

  植物相对生长速率常用来表征植物的抗逆能力,即胁迫下植物生长的快慢.由图 1可知:单一AR组水稻相对生长速率较CK分别降低24.7%(pH=3.5)和45.89%(pH=2.5);单一La组水稻相对生长速率较CK升高19.86%.La+pH 3.5组水稻相对生长速率与CK无显著差异,较单一pH=3.5组升高18.03%,表明La缓解了pH=3.5 AR对水稻造成的伤害,这与周青的研究结果一致.La+pH 2.5组水稻相对生长速率较CK降低42.47%,与单一pH=2.5 AR组无显著差异,表明La对pH=2.5 AR组造成的伤害未能起到缓解作用,推测可能是pH=2.5 AR严重破坏了水稻叶片光合系统,而此伤害已经超出了La对光合系统的调控范围,从而使水稻生长受到抑制.

图片关键词 

  图1 镧对酸雨胁迫下水稻相对生长速率的影响(图中数据为平均值±标准误差,不同字母表示各处理间差异显著(p<0.05),下同)

  3.2 镧对酸雨胁迫下水稻叶片质膜H+-ATPase活性和胞内H+荧光强度的影响

  质膜H+-ATPase 能利用 ATP 水解释放的能量调控细胞内H+的平衡,以维持细胞内环境的稳定.由图 2a可知,单一AR组水稻叶片质膜H+-ATPase活性较CK分别升高8.22%(pH=3.5)和降低27.40%(pH=2.5).单一La组质膜H+-ATPase活性较CK升高13.01%.La+pH 3.5 AR组水稻叶片质膜H+-ATPase活性较CK与单一pH=3.5 AR组分别升高26.03%和16.46%,推测可能是La作为一种效应物与质子泵C末端结合,解除其自抑制功能,从而增强了质膜H+-ATPase活力表达.La+pH 2.5 AR组水稻叶片质膜H+-ATPase活性较CK降低19.86%,与单一pH=2.5 AR组无显著差异.质膜H+-ATPase活性受转录水平的调节,pH=2.5 AR下调了质膜H+-ATPase的转录水平,尽管La对质膜H+-ATPase的转录水平有上调作用,但最终La+pH 2.5 AR组H+-ATPase活性降低,表明La对AR胁迫下质膜H+-ATPase活性的调节受AR强度的制约.

图片关键词 

  图2 镧对酸雨胁迫下水稻叶片质膜H+-ATPase活性(a)和胞内H+荧光强度(b)的影响

  胞内H+荧光强度增强表明胞内H+增多.由图 2b可知,单一AR组水稻叶片胞内H+荧光强度较CK分别升高34.12%(pH=3.5)、69.88%(pH=2.5).单一La组胞内H+荧光强度较CK降低12.04%.La+pH 3.5 AR组水稻叶片胞内H+荧光强度较CK和单一pH=3.5 AR组分别降低21.69%和41.96%,结合质膜H+-ATPase活性变化可知,可能是由于质膜H+-ATPase活性升高,胞内过多的H+被泵至胞外,维持了细胞内环境的稳定,使水稻恢复生长.La+pH 2.5 AR组水稻叶片胞内H+较CK升高38.52%,而与单一pH=2.5 AR组无显著差异,分析可能是由于质膜H+-ATPase活性受抑制,大量H+在胞内积累,使水稻的生长受到抑制.表明La调节植物耐酸性与调控质膜H+-ATPase活性有关,调控效果受AR强度限制.

  3.3 镧对酸雨胁迫下水稻叶片膜脂过氧化与质膜脂肪酸组成的影响

  CAT是植物体内重要的抗氧化酶,可以分解植物体内代谢过程中产生的H2O2.MDA是细胞膜脂过氧化的产物之一,其含量升高表示细胞膜脂过氧化程度加重.由表 1可知:单一pH=3.5 AR组CAT活性、H2O2和MDA含量和较CK分别升高7.99%、12.24%和34.25%.单一pH=2.5 AR组CAT活性较CK降低40.57%,H2O2和MDA含量较CK升高44.90%和70.92%.单一La组水稻叶片CAT活性较CK升高26.43%,H2O2和MDA含量较CK分别降低32.65%和28.30%.La+ pH 3.5 AR组水稻叶片CAT活性较CK升高32.38%,H2O2和MDA含量较CK无显著变化,且与单一pH=3.5 AR组相比,CAT活性升高22.58%,H2O2和MDA含量分别降低19.57%和28.99%,推测可能是由于La改变了CAT的空间折叠态和卟啉活性中心的易变性,使CAT活性增强并清除体内过多的H2O2,降低了膜脂过氧化程度.La+ pH 2.5 AR组水稻叶片CAT活性较CK降低37.91%,H2O2和MDA含量较CK升高38.78%和61.51%,但与单一pH=2.5 AR组相比,3个指标均无显著变化.严重玲等研究显示,酸雨强度越大,作物对稀土的吸收和利用越少.本研究结果显示:在pH=2.5 AR胁迫下,水稻叶片对La的吸收和利用量减少,La未能提高CAT活性,过多的H2O2造成了膜脂过氧化,产生过量的MDA,而MDA可能抑制膜上蛋白的合成,进而导致质膜H+-ATPase活性的降低.pH=3.5 AR胁迫下,La能促进CAT活性升高,清除过多的H2O2积累,减轻质膜过氧化.pH=2.5 AR引起的H2O2积累不仅抑制了CAT活性,也超出了La的清除能力.

  表1 镧对酸雨胁迫水稻叶片中CAT活性、H2O2和MDA含量的影响

图片关键词

   脂肪酸不饱和度指数可用来表征脂肪酸的不饱和程度,IUFA升高表示脂肪酸不饱和程度增加.由表 2可知,单一AR组水稻叶片质膜IUFA较CK分别降低5.32%(pH=3.5)和9.03%(pH=2.5);单一La组水稻叶片质膜IUFA较CK升高3.77%.La+pH 3.5 AR组水稻叶片质膜IUFA较CK无显著差异,但较单一pH=3.5 AR组升高3.32%,结合MDA含量变化可知,La减轻了pH=3.5 AR诱发的膜脂过氧化,质膜流动性增强,使质膜的功能增强,质膜H+-ATPase活性增强.La+pH 2.5 AR组较CK降低10.08%,与单一pH=2.5 AR组无显著差异,推测可能是La未能减轻pH=2.5 AR诱发的膜脂过氧化,膜通透性增大,导致质膜的功能降低甚至丧失,质膜H+-ATPase活性降低.表明La减轻pH=3.5 AR诱发的质膜过氧化,进而维持质膜的流动性,使质膜H+-ATPase保持较高活性;La未能减轻pH=2.5 AR诱发的质膜过氧化,质膜的流动性降低,质膜H+-ATPase活性受抑未能缓解.

  表2 镧对酸雨胁迫下水稻叶片质膜脂肪酸组成的影响

图片关键词 

    4 结论

  1)La能缓解pH=3.5 AR对水稻生长的伤害,对pH=2.5 AR的防护效果不明显,显示La对AR胁迫下水稻生长的调节作用受AR强度限制.

  2)La促进pH=3.5 AR胁迫下质膜H+-ATPase活性升高,减少胞内H+,缓解AR伤害;而在pH=2.5 AR胁迫下,La对质膜H+-ATPase调控效果不明显,大量H+在胞内积累,表明La调节植物耐酸性与调控质膜H+-ATPase活性有关,调控效果受AR强度限制.具体参见 污水处理技术资料或污水技术资料更多相关技术文档。

  3)La能通过促进CAT活性来减轻pH=3.5 AR诱发的质膜过氧化,进而维持了质膜的流动性,有助于质膜H+-ATPase保持较高活性;pH=2.5 AR造成的活性氧积累超出了La的调控与清除能力,膜脂过氧化发生,质膜的流动性降低,致使质膜H+-ATPase活性受抑.研究发现,La能改善AR胁迫对质膜环境的影响,进而调节质膜H+-ATPase活性.

公司简介

■ 自1996年以来我们一直致力于这个领域的发展,建造高品质的水处理工程和研究前沿的水处理工艺是我们不断的追求。

■ 近年来我们为国内外的市政、地产、工业等相关行业提供过多项优质工程。

 

MORE

联系我们

  • 北京亦庄经海二路29号院4-5A区
  • 010-65501108
  • greenwater.cc@163.com
  • www.greenwater.cc