热碱处理对污水处理厂污泥的影响

2017-03-15 04:18:38 北京绿水环境工程技术有限公司 1

  在污水生物处理过程中会产生大量剩余污泥,污泥产量通常占污水量体积的0.3%~0.5%,或者约为污水质量的1%~2%. 据统计,目前我国污水处理能力约1.53亿m3 ·d-1,年产生含水量80%的污泥3 500多万t[1],随着今后我国的经济发展,污水处理量和污水处理率会不断增加,随之而产生的剩余污泥量也会越来越多[2]. 因此,剩余污泥的处理与处置已成为迫在眉睫的问题.

  厌氧消化是一种传统的污泥处理方法,其中,水解过程是限速步骤[3]. 采用适当的预处理可以在较短的时间内将污泥水解,提高污泥厌氧消化效率[4]. 近年来,污泥热碱联合处理法在污泥预处理中得到研究者的广泛关注[5, 6, 7, 8, 9, 10]. 在热碱处理中,碱可以减弱微生物细胞壁对高温的抵抗力,使细胞受热时更容易破裂,从而释放出大量的有机物(如蛋白质、 碳水化合物等)[5,6]. 该方法具有操作简单、 处理时间短等优点,并且能获得比单独碱处理或热处理更好的溶出效果[7,8]. 研究表明,当热碱处理温度为170℃、 pH值为12时,污泥中SCOD释放量比未经处理污泥增加83%,随后将此污泥进行厌氧消化发现其甲烷产量比未处理污泥提高54%[9,10]. 在热碱处理过程中污泥的性质会发生改变,以有利于后续的污泥处理. 研究表明,在热碱处理过程中对污泥特性影响较大的因素有温度(20~210℃)、 pH值(7~12.5)、 处理时间(0~60 min)、 污泥浓度(10~40 g ·L-1)、 加热方式(间接热交换、 直接加热等)、 加碱种类[NaOH、 Ca(OH)2等][11,12].

  然而,目前污泥热碱处理的研究大多仅限于各单因素(如温度、 pH值等)和双因素(如温度-pH、 温度-时间、 pH-时间等)[13, 14, 15],缺乏多种因素的综合影响研究. 为了考察热碱处理过程中各因素同时作用对污泥特性的综合影响,本研究采用正交试验同时考察不同污泥浓度、 pH、 温度和处理时间的组合条件对污泥特性的影响,并找出热碱处理的最优组合条件.

  1 材料与方法

  1.1 污泥

  试验用泥为北京市某污水处理厂的剩余污泥,该污水处理厂采用活性污泥法处理城市污水. 自二沉池取得污泥后,采用40目筛网过筛,去除污泥中的大颗粒物,重力沉降将污泥浓缩到一定浓度,去上清液后使用. 污泥特性如下:pH 6.9±0.1,总化学需氧量(TCOD)(10 260±120)mg ·L-1,SCOD(75±20)mg ·L-1,总悬浮性固体(SS)(14.3±0.2)g ·L-1,挥发性悬浮性固体(VSS)(9.6±0.2)g ·L-1. 1.2 正交试验 1.2.1 正交试验设计

  选择污泥浓度、 pH、 温度和处理时间4个因素,并取4个水平进行热碱处理正交试验,选择L9(45)正交表,正交试验设计表如表 1所示.

图片关键词

  表 1 L9(45)正交试验表

  正交试验表中每组试验做3个平行,通过浓缩和稀释调节控制污泥浓度,采用8 mol ·L-1 NaOH进行pH调节,污泥加热是将装有污泥的水热反应釜(上海岩征)置于不同温度的马弗炉(Nabertherm P330,德国)中完成,加热时间根据设计要求控制. 污泥进行完热碱处理,冷却后进行相关分析. 1.2.2 验证试验

  为了验证正交试验得出的单位污泥SCOD随温度和pH的变化趋势,进行如下验证试验:采用8 mol ·L-1 NaOH分别将污泥pH调节为6.9±0.1、 9.0±0.1、 10±0.1、 11.5±0.1、 12.5±0.1,并稳定5 min. 再将上述5种不同pH值污泥分别置于20、 100、 175及210℃处理60 min,冷却后进行相关分析,各做3组平行试验. 1.3 分析方法

  COD采用COD分析仪(HACH D2800,美国)测定. SCOD的测定,首先将样品在4 500 r ·min-1离心分离10 min,之后用0.45 μm的微孔水系滤膜过滤之后进行测定. 污泥的粒径采用激光粒度分析仪(Malvern Mastersizer 2000,英国)测定,用中值粒径d0.5表示. 分形维数根据激光粒度仪的测量数据按照光散射法计算确定[16]. pH值采用pH计(Sartorius PB-10,德国)测定,SS、 VSS等采用标准方法测定[17]. 每个指标做3个平行,其平均值为检测结果. 2 结果与讨论 2.1 不同热碱预处理条件对污泥融胞的影响

  热碱处理会破坏污泥的絮体和微生物细胞,从而导致细胞间胞外聚合物和细胞内有机物被释放[18]. 污泥的融胞作用可以用溶解性有机物(SCOD)的释放来表示,按正交设计表(表 1)进行热碱处理后,单位污泥SCOD的变化见表 2,其极差及方差分析见表 3. 从中可知,极差大小为:pH>温度>时间>污泥浓度. 结合方差分析结果可知,这4个因素对污泥释放SCOD影响的显著性为pH值是高度显著,温度和处理时间是显著,污泥浓度是不显著. 因此,这4个因素对污泥释放SCOD影响的显著性顺序为:pH>温度>时间>污泥浓度.

图片关键词

  表 2 正交试验结果

图片关键词

  表 3 污泥SCOD正交试验极差及方差分析 1)

  根据试验结果,可以得到单位污泥SCOD随4个因素的变化(图 1). 从图 1中可知,单位污泥SCOD随pH的升高或处理时间的延长而升高,此变化趋势与文献[19]一致. 单位污泥SCOD随温度的升高呈先升高后降低的变化:当温度低于175℃时,SCOD随温度升高而增加,而当温度高于175℃时,SCOD值随温度的升高反而降低. Neyens等[20]研究表明:污泥在175℃条件下热处理60 min后微生物细胞被破坏,从而释放出大量SCOD,但当热处理温度高于175℃会限制污泥释放SCOD. 此外,随着污泥浓度升高,单位污泥SCOD有一定增加,但增加幅度不如其它3个因素. 图 1表明,在本试验条件下,4个因素对热碱处理释放单位污泥SCOD的最佳组合条件为:污泥浓度36.55 g ·L-1、 pH 12.5、 温度175℃和处理时间60 min.

图片关键词

  图 1 污泥SCOD随各因素的变化

  在热碱处理过程中pH和温度对污泥释放SCOD的影响是高度显著,为了进一步验证SCOD随温度和pH的变化趋势,进行了验证试验,试验结果见图 2.

图片关键词

  图 2 热碱处理对污泥SCOD的影响

  从图 2可以看出,SCOD随pH升高而升高,当温度低于175℃时,SCOD随温度升高而增加,但当温度高于175℃时,SCOD值随温度的升高而降低,这个结果与前面结果一致. Dwyer等[21]研究表明,高温处理下污泥中还原糖的醛基和氨基酸中的氨基会发生美拉德反应,生成难降解的褐色多聚氮. 210℃时污泥的胞内物质多糖被大量释放并在高温下生成大量褐色难降解物质,从而导致单位污泥SCOD在210℃低于175℃. 2.2 不同热碱预处理条件对污泥浓度的影响

  热碱预处理后,污泥中部分不溶性物质转化为溶解性物质,使污泥浓度降低[22]. 按正交设计表(表 1)进行热碱处理后污泥的SS和VSS减少率如表 2所示,其极差及方差分析见表 4. 从中可知,污泥SS和VSS减少率的极差大小均为:pH>温度>时间>污泥浓度. 结合方差分析结果可知,这4个因素对污泥SS和VSS影响的显著性均为pH值、 温度和处理时间是显著,污泥浓度是不显著. 因此,这 4个因素对污泥SS和VSS影响的显著性顺序为:pH>温度>时间>污泥浓度.

图片关键词

  表 4 污泥SS、 VSS正交试验极差及方差分析 1)

  根据表 2中的试验结果,可以得到污泥SS、 VSS减少率随4个因素的变化(图 3). 从图 3中可知,SS、 VSS减少率随处理时间延长和污泥浓度升高而升高,但随污泥浓度的增加幅度小,这一变化规律与文献一致[23]. 此外,SS、 VSS减少率随温度的升高呈先升高后降低的趋势,此趋势与文献[24]一致. 但是,SS、 VSS减少率却随pH的升高呈先降低后升高的趋势. 图 3表明,在本试验条件下,4个因素对热碱处理降低SS、 VSS的最佳组合条件为:污泥浓度36.55 g ·L-1、 pH 12.5、 温度175℃和处理时间60 min. 对比单位污泥SCOD和污泥浓度(SS和VSS)的变化(表 2、 图 1和图 3)可知,4个因素对3个参数的影响相似,这主要是由于污泥SCOD的释放来源于污泥絮体和微生物细胞的破裂、 融胞所释放的有机物,有机物释放会使一部分不溶性物质转化为溶解性物质,从而降低污泥浓度.

图片关键词

  图 3 污泥SS、 VSS减少率随各因素的变化

  2.3 不同热碱处理条件对污泥形态特征的影响

  热碱处理能破坏污泥絮体结构,改变污泥表观形态,减小污泥粒径,并提高污泥的ξ电位,从而影响污泥的形态特征[25]. 污泥形态特征可以用粒径和分形维数表示. 分形维数是一个很重要的参数,它影响了絮体的密度,分形维数的提高说明污泥絮体由松散型向致密型过渡[26]. 采用激光粒度仪测定污泥粒径,并根据光散射法计算污泥絮体的分形维数,试验结果如表 2所示,其极差及方差分析见表 5. 从中可知,粒径及分形维数的极差大小均为:pH>温度>时间>污泥浓度. 结合方差分析结果可知,这4个因素对污泥粒径的影响是显著的,显著性顺序为:pH>温度>时间>污泥浓度. 而只有pH值对分形维数的影响是显著性的,其它3个因素均不显著.

图片关键词

  表 5 污泥粒径及分形维数正交试验极差及方差分析 1)

  根据表 2中的试验结果,可以得到污泥粒径及分形维数随4个因素的变化(图 4). 从图 4中可知,粒径和分形维数随温度的升高或处理时间的延长均呈先降低后升高的趋势. 而污泥浓度、 pH值对粒径和分形维数的影响有区别,其中粒径随污泥浓度或pH值的升高均呈先增大后减小的趋势,然而分形维数几乎不受污泥浓度影响,但随pH的升高而降低. 刘金凤等[27]研究表明热碱处理能促使污泥固体溶解和水解,减小污泥粒径和分形维数,提高污泥厌氧消化性能. 因此,粒径和分形维数越小表明污泥热碱处理效果越好. 图 4表明,在本试验条件下,4个因素对热碱处理减小污泥粒径和分形维数的最佳组合条件为:污泥浓度36.55 g ·L-1、 pH 12.5、 温度175℃和处理时间45 min.具体参见 污水处理技术资料或污水技术资料更多相关技术文档。

图片关键词

  图 4 污泥粒径及分形维数随各因素的变化

  3 结论

  通过正交试验研究了污泥热碱处理对污水处理厂污泥特性的影响. 结果表明,研究的4个因素—污泥浓度、 pH、 温度和处理时间均会影响污泥特性,这些特性包括SCOD、 污泥浓度、 粒径和分形维数. 4个因素对单位污泥释放SCOD和污泥浓度污泥影响显著性顺序为pH>温度>时间>污泥浓度,最佳组合条件为:污泥浓度36.55 g ·L-1、 pH 12.5、 温度175℃和处理时间60 min. 而对于粒径和分形维数影响的显著性顺序则为pH>温度>时间>污泥浓度,最佳组合条件为:污泥浓度36.55 g ·L-1、 pH 12.5、 温度175℃和处理时间45 min.(来源及作者:东北电力大学建筑工程学院 杨世东、陈霞、刘操、肖本益)

公司简介

■ 自1996年以来我们一直致力于这个领域的发展,建造高品质的水处理工程和研究前沿的水处理工艺是我们不断的追求。

■ 近年来我们为国内外的市政、地产、工业等相关行业提供过多项优质工程。

 

MORE

联系我们

  • 北京亦庄经海二路29号院4-5A区
  • 010-65501108
  • greenwater.cc@163.com
  • www.greenwater.cc